Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.282
1.
BMC Cancer ; 24(1): 571, 2024 May 08.
Article En | MEDLINE | ID: mdl-38720279

BACKGROUND: Glycometabolism and lipid metabolism are critical in cancer metabolic reprogramming. The primary aim of this study was to develop a prognostic model incorporating glycometabolism and lipid metabolism-related genes (GLRGs) for accurate prognosis assessment in patients with endometrial carcinoma (EC). METHODS: Data on gene expression and clinical details were obtained from publicly accessible databases. GLRGs were obtained from the Genecards database. Through nonnegative matrix factorization (NMF) clustering, molecular groupings with various GLRG expression patterns were identified. LASSO Cox regression analysis was employed to create a prognostic model. Use rich algorithms such as GSEA, GSVA, xCELL ssGSEA, EPIC,CIBERSORT, MCPcounter, ESTIMATE, TIMER, TIDE, and Oncoppredict to analyze functional pathway characteristics of the forecast signal, immune status, anti-tumor therapy, etc. The expression was assessed using Western blot and quantitative real-time PCR techniques. A total of 113 algorithm combinations were combined to screen out the most significant GLRGs in the signature for in vitro experimental verification, such as colony formation, EdU cell proliferation, wound healing, apoptosis, and Transwell assays. RESULTS: A total of 714 GLRGs were found, and 227 of them were identified as prognostic-related genes. And ten GLRGs (AUP1, ESR1, ERLIN2, ASS1, OGDH, BCKDHB, SLC16A1, HK2, LPCAT1 and PGR-AS1) were identified to construct the prognostic model of patients with EC. Based on GLRGs, the risk model's prognosis and independent prognostic value were established. The signature of GLRGs exhibited a robust correlation with the infiltration of immune cells and the sensitivity to drugs. In cytological experiments, we selected HK2 as candidate gene to verify its value in the occurrence and development of EC. Western blot and qRT-PCR revealed that HK2 was substantially expressed in EC cells. According to in vitro experiments, HK2 knockdown can increase EC cell apoptosis while suppressing EC cell migration, invasion, and proliferation. CONCLUSION: The GLRGs signature constructed in this study demonstrated significant prognostic value for patients with endometrial carcinoma, thereby providing valuable guidance for treatment decisions.


Endometrial Neoplasms , Lipid Metabolism , Humans , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Prognosis , Lipid Metabolism/genetics , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , Cell Line, Tumor , Gene Expression Profiling
2.
Medicine (Baltimore) ; 103(19): e38129, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728458

BACKGROUND: The prognostic significance of tumor-infiltrating immune cells in endometrial cancer is a subject of ongoing debate. Recent evidence increasingly suggests that these immune cells and cytokines, abundant in endometrial cancer tissues, play a pivotal role in stimulating the body inherent anti-tumor immune responses. METHODS: Leveraging publicly accessible genetic data, we conducted an exhaustive 2-sample Mendelian randomization (MR) study. This study aimed to explore the causal links between 731 immunophenotypes and the risk of endometrial cancer. We thoroughly assessed the robustness, heterogeneity, and potential horizontal pleiotropy of our findings through extensive sensitivity analyses. RESULTS: Our study identified 36 immunophenotypes associated with endometrial cancer risk. Specific immunophenotypes, such as the percentage of Naive-mature B-cells in lymphocytes (OR = 0.917, 95% CI = 0.863-0.974, P = .005), and HLA DR expression on CD14-CD16 + monocytes (OR = 0.952, 95% CI = 0.911-0.996, P = .032), exhibited a negative correlation with endometrial cancer. Conversely, CD127 expression on CD45RA + CD4 + in Treg cells (OR = 1.042, 95% CI = 1.000-1.085, P = .049), and CM CD4+%T in T cell maturation stages (OR = 1.074, 95% CI = 1.012-1.140, P = .018) showed a positive correlation. Reverse MR analysis linked endometrial cancer to 4 immunophenotypes, including a positive correlation with CD127-CD8br %T cell of Treg (OR = 1.172, 95% CI = 1.080-1.270, P = .0001), and negative correlations with 3 others, including CM CD4+%T cell (OR = 0.905, 95% CI = 0.832-0.984, P = .019). CONCLUSION SUBSECTIONS: Our findings underscore a significant causal relationship between immunophenotypes and endometrial cancer in bidirectional MR analyses. Notably, the CM CD4+%T immunophenotype emerged as potentially crucial in endometrial cancer development.


Endometrial Neoplasms , Mendelian Randomization Analysis , Female , Humans , Endometrial Neoplasms/genetics , Endometrial Neoplasms/immunology , Immunophenotyping , Lymphocytes, Tumor-Infiltrating/immunology
3.
Genes Chromosomes Cancer ; 63(5): e23237, 2024 May.
Article En | MEDLINE | ID: mdl-38722212

BACKGROUND: This study investigates the potential influence of genotype and parent-of-origin effects (POE) on the clinical manifestations of Lynch syndrome (LS) within families carrying (likely) disease-causing MSH6 germline variants. PATIENTS AND METHODS: A cohort of 1615 MSH6 variant carriers (310 LS families) was analyzed. Participants were categorized based on RNA expression and parental inheritance of the variant. Hazard ratios (HRs) were calculated using weighted Cox regression, considering external information to address ascertainment bias. The findings were cross-validated using the Prospective Lynch Syndrome Database (PLSD) for endometrial cancer (EC). RESULTS: No significant association was observed between genotype and colorectal cancer (CRC) risk (HR = 1.06, 95% confidence interval [CI]: 0.77-1.46). Patients lacking expected RNA expression exhibited a reduced risk of EC (Reference Cohort 1: HR = 0.68, 95% CI: 0.43-1.03; Reference Cohort 2: HR = 0.63, 95% CI: 0.46-0.87). However, these results could not be confirmed in the PLSD. Moreover, no association was found between POE and CRC risk (HR = 0.78, 95% CI: 0.52-1.17) or EC risk (Reference Cohort 1: HR = 0.93, 95% CI: 0.65-1.33; Reference Cohort 2: HR = 0.8, 95% CI: 0.64-1.19). DISCUSSION AND CONCLUSION: No evidence of POE was detected in MSH6 families. While RNA expression may be linked to varying risks of EC, further investigation is required to explore this observation.


Colorectal Neoplasms, Hereditary Nonpolyposis , DNA-Binding Proteins , Genotype , Phenotype , Humans , Colorectal Neoplasms, Hereditary Nonpolyposis/genetics , Female , Male , DNA-Binding Proteins/genetics , Middle Aged , Adult , Germ-Line Mutation , Aged , Genetic Predisposition to Disease , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology
4.
Ceska Gynekol ; 89(2): 128-132, 2024.
Article En | MEDLINE | ID: mdl-38704225

Endometrial cancer is the most common gynecological cancer and the second most prevalent female malignancy in the developed world. It is typically diagnosed in postmenopausal women, presenting with the characteristic clinical symptom of uterine abnormal bleeding. In the past, only two histological types were considered. However, it has become increasingly evident that endometrial cancer is a clinically heterogeneous disease, and this heterogeneity is closely associated with the diversity of underlying molecular alterations. The Cancer Genome Atlas classification has significantly advanced the diagnosis, risk stratification, and management of endometrial cancer by categorizing it into four molecular subgroups, each characterized by distinct mutational burdens and copy number alterations.


Endometrial Neoplasms , Humans , Endometrial Neoplasms/classification , Endometrial Neoplasms/genetics , Endometrial Neoplasms/therapy , Endometrial Neoplasms/pathology , Endometrial Neoplasms/diagnosis , Female
5.
Cell Mol Biol Lett ; 29(1): 63, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698330

BACKGROUND: Endometrial cancer (EC) is one of the most common gynecological cancers. Herein, we aimed to define the role of specific myosin family members in EC because this protein family is involved in the progression of various cancers. METHODS: Bioinformatics analyses were performed to reveal EC patients' prognosis-associated genes in patients with EC. Furthermore, colony formation, immunofluorescence, cell counting kit 8, wound healing, and transwell assays as well as coimmunoprecipitation, cycloheximide chase, luciferase reporter, and cellular thermal shift assays were performed to functionally and mechanistically analyze human EC samples, cell lines, and a mouse model, respectively. RESULTS: Machine learning techniques identified MYH14, a member of the myosin family, as the prognosis-associated gene in patients with EC. Furthermore, bioinformatics analyses based on public databases showed that MYH14 was associated with EC chemoresistance. Moreover, immunohistochemistry validated MYH14 upregulation in EC cases compared with that in normal controls and confirmed that MYH14 was an independent and unfavorable prognostic indicator of EC. MYH14 impaired cell sensitivity to carboplatin, paclitaxel, and progesterone, and increased cell proliferation and metastasis in EC. The mechanistic study showed that MYH14 interacted with MYH9 and impaired GSK3ß-mediated ß-catenin ubiquitination and degradation, thus facilitating the Wnt/ß-catenin signaling pathway and epithelial-mesenchymal transition. Sesamolin, a natural compound extracted from Sesamum indicum (L.), directly targeted MYH14 and attenuated EC progression. Additionally, the compound disrupted the interplay between MYH14 and MYH9 and repressed MYH9-regulated Wnt/ß-catenin signaling. The in vivo study further verified sesamolin as a therapeutic drug without side effects. CONCLUSIONS: Herein, we identified that EC prognosis-associated MYH14 was independently responsible for poor overall survival time of patients, and it augmented EC progression by activating Wnt/ß-catenin signaling. Targeting MYH14 by sesamolin, a cytotoxicity-based approach, can be applied synergistically with chemotherapy and endocrine therapy to eventually mitigate EC development. This study emphasizes MYH14 as a potential target and sesamolin as a valuable natural drug for EC therapy.


Endometrial Neoplasms , Glycogen Synthase Kinase 3 beta , Myosin Heavy Chains , beta Catenin , Humans , Female , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/pathology , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/genetics , Animals , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , Cell Line, Tumor , beta Catenin/metabolism , beta Catenin/genetics , Mice , Cell Proliferation/drug effects , Mice, Nude , Gene Expression Regulation, Neoplastic/drug effects , Signal Transduction/drug effects , Prognosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Middle Aged , Naphthoquinones/pharmacology
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732110

An observational cohort study of patients diagnosed with endometrial cancer (EC) stage IA G1, or atypical endometrial hyperplasia (AEH), undergoing organ-preserving treatment, was conducted. OBJECTIVE OF THE STUDY: To determine CDO1, PITX2, and CDH13 gene methylation levels in early endometrial cancer and atypical hyperplasia specimens obtained before organ-preserving treatment in the patients with adequate response and with insufficient response to hormonal treatment. MATERIALS AND METHODS: A total of 41 endometrial specimens obtained during diagnostic uterine curettage in women with EC (n = 28) and AEH (n = 13), willing to preserve reproductive function, were studied; 18 specimens of uterine cancer IA stage G1 from peri- and early postmenopausal women (comparison group) were included in the study. The control group included 18 endometrial specimens from healthy women obtained by diagnostic curettage for missed abortion and/or intrauterine adhesions. Methylation levels were analyzed using the modified MS-HRM method. RESULTS: All 13 women with AEH had a complete response (CR) to medical treatment. In the group undergoing organ-preserving treatment for uterine cancer IA stage G1 (n = 28), 14 patients had a complete response (EC CR group) and 14 did not (EC non-CR group). It was found that all groups had statistically significant differences in CDO1 gene methylation levels compared to the control group (p < 0.001) except for the EC CR group (p = 0.21). The p-value for the difference between EC CR and EC non-CR groups was <0.001. The differences in PITX2 gene methylation levels between the control and study groups were also significantly different (p < 0.001), except for the AEH group (p = 0.21). For the difference between EC CR and EC non-CR groups, the p-value was 0.43. For CDH13 gene methylation levels, statistically significant differences were found between the control and EC non-CR groups (p < 0.001), and the control and EC comparison groups (p = 0.005). When comparing the EC CR group with EC non-CR group, the p-value for this gene was <0.001. The simultaneous assessment of CDO1 and CDH13 genes methylation allowed for an accurate distinction between EC CR and EC non-CR groups (AUC = 0.96). CONCLUSION: The assessment of CDO1 and CDH13 gene methylation in endometrial specimens from patients with endometrial cancer (IA stage G1), scheduled for medical treatment, can predict the treatment outcome.


Cadherins , DNA Methylation , Endometrial Neoplasms , Homeobox Protein PITX2 , Homeodomain Proteins , Transcription Factors , Humans , Female , Middle Aged , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/therapy , Cadherins/genetics , Cadherins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Homeodomain Proteins/genetics , Adult , Treatment Outcome , Aged , Biomarkers, Tumor/genetics , Neoplasm Staging
7.
Int J Biol Markers ; 39(2): 168-183, 2024 Jun.
Article En | MEDLINE | ID: mdl-38646803

BACKGROUND: The comprehensive expression level and potential molecular role of Cyclin A2 (CCNA2) in uterine corpus endometrial carcinoma (UCEC) remains undiscovered. METHODS: UCEC and normal endometrium tissues from in-house and public databases were collected for investigating protein and messenger RNA expression of CCNA2. The transcription factors of CCNA2 were identified by the Cistrome database. The prognostic significance of CCNA2 in UCEC was evaluated through univariate and multivariate Cox regression as well as Kaplan-Meier curve analysis. Single-cell RNA-sequencing (scRNA-seq) analysis was performed to explore cell types in UCEC, and the AUCell algorithm was used to investigate the activity of CCNA2 in different cell types. RESULTS: A total of 32 in-house UCEC and 30 normal endometrial tissues as well as 720 UCEC and 165 control samples from public databases were eligible and collected. Integrated calculation showed that the CCNA2 expression was up-regulated in the UCEC tissues (SMD = 2.43, 95% confidence interval 2.23∼2.64). E2F1 and FOXM1 were identified as transcription factors due to the presence of binding peaks on transcription site of CCNA2. CCNA2 predicted worse prognosis in UCEC. However, CCNA2 was not an independent prognostic factor in UCEC. The scRNA-seq analysis disclosed five cell types: B cells, T cells, monocytes, natural killer cells, and epithelial cells in UCEC. The expression of CCNA2 was mainly located in B cells and T cells. Moreover, CCNA2 was active in T cells and B cells using the AUCell algorithm. CONCLUSION: CCNA2 was up-regulated and mainly located in T cells and B cells in UCEC. Overexpression of CCNA2 predicted unfavorable prognosis of UCEC.


Cyclin A2 , Endometrial Neoplasms , Humans , Female , Cyclin A2/genetics , Cyclin A2/metabolism , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Prognosis , Middle Aged , Tissue Array Analysis/methods , RNA-Seq , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Single-Cell Gene Expression Analysis
8.
Technol Cancer Res Treat ; 23: 15330338241242637, 2024.
Article En | MEDLINE | ID: mdl-38584417

Background: Endometrial cancer (EC) is the leading gynecological cancer worldwide, yet current EC screening approaches are not satisfying. The purpose of this retrospective study was to evaluate the feasibility and capability of DNA methylation analysis in cervical Papanicolaou (Pap) brush samples for EC detection. Methods: We used quantitative methylation-sensitive PCR (qMS-PCR) to determine the methylation status of candidate genes in EC tissue samples, as well as cervical Pap brushes. The ability of RASSF1A and HIST1H4F to serve as diagnostic markers for EC was then examined in cervical Pap brush samples from women with endometrial lesions of varying degrees of severity. Results: Methylated RASSF1A and HIST1H4F were found in EC tissues. Further, methylation of the two genes was also observed in cervical Pap smear samples from EC patients. Methylation levels of RASSF1A and HIST1H4F increased as endometrial lesions progressed, and cervical Pap brush samples from women affected by EC exhibited significantly higher levels of methylated RASSF1A and HIST1H4F compared to noncancerous controls (P < .001). Receiver operating characteristic (ROC) curves and area under the curve (AUC) analyses revealed RASSF1A and HIST1H4F methylation with a combined AUC of 0.938 and 0.951 for EC/pre-EC detection in cervical Pap brush samples, respectively. Conclusion: These findings demonstrate that DNA methylation analysis in cervical Pap brush samples may be helpful for EC detection, broadening the scope of the commonly used cytological screening. Our proof-of-concept study provides new insights into the field of clinical EC diagnosis.


Endometrial Neoplasms , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , DNA Methylation , Retrospective Studies , Cervix Uteri/pathology , Endometrial Neoplasms/diagnosis , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology
10.
Biomarkers ; 29(4): 185-193, 2024 Jun.
Article En | MEDLINE | ID: mdl-38568742

BACKGROUND: Extra spindle pole bodies-like 1 (ESPL1) is known to play a crucial role in the segregation of sister chromatids during mitosis. Overexpression of ESPL1 is considered to have oncogenic effects in various human cancers. However, the specific biological function of ESPL1 in endometrial cancer (EC) remains unclear. METHODS: The TCGA and GEO databases were utilized to assess the expression of ESPL1 in EC. Immunohistochemistry was utilized to detect separase expression in EC samples. Kaplan-Meier survival analysis and Cox regression analysis were performed to evaluate the diagnostic and prognostic significance of ESPL1 in EC. Gene Set Enrichment Analysis (GSEA) was employed to explore the potential signaling pathway of ESPL1 in EC. Cell proliferation and colony formation ability were analyzed using CCK-8 and colony formation assay. RESULTS: Our analysis revealed that ESPL1 is significantly upregulated in EC, and its overexpression is associated with advanced clinical characteristics and unfavourable prognostic outcomes. Suppression of ESPL1 attenuated proliferation of EC cell line. CONCLUSION: The upregulation of ESPL1 is associated with advanced disease and poor prognosis in EC patients. These findings suggest that ESPL1 has the potential to serve as a diagnostic and prognostic biomarker in EC, highlighting its significance in the management of EC patients.


The expression of ESPL1 was higher in EC tissue than normal endometrial tissue.ESPL1 could be a potential prognostic marker for EC.


Biomarkers, Tumor , Cell Proliferation , Endometrial Neoplasms , Separase , Up-Regulation , Humans , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/mortality , Endometrial Neoplasms/metabolism , Prognosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Proliferation/genetics , Cell Line, Tumor , Separase/metabolism , Separase/genetics , Middle Aged , Kaplan-Meier Estimate , Gene Expression Regulation, Neoplastic
11.
Cells ; 13(7)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38607019

Previous research indicates that carcinogenesis involves disrupting the functions of numerous genes, including factors involved in the regulation of transcription and cell proliferation. For these reasons, in endometrial carcinogenesis, we decided to investigate the expression of TSG101 (a suppressor of tumor transformation) and LSF (a transcription factor involved in numerous cellular processes, such as cell cycle regulation, cell growth, development, and apoptosis). LSF may be involved in the regulation of TSG101 expression. The research material consisted of endometrial cancer samples from 60 patients. The control group consisted of normal endometrium samples donated by 60 women undergoing surgery for benign diseases of the female reproductive organs. The samples were subjected to immunohistochemical staining with antibodies specific to TSG101 and LSF. Specific antibodies were used to identify TSG101 and LSF in the examined histopathological preparations. An approximately 14-fold lower risk of endometrial cancer development was observed in patients with TSG expression in more than 75% of the assessed cells (4% vs. 36%; OR = 0.07; p = 0.0182). There was a four-fold lower risk of endometrial cancer development in patients with LSF expression in more than 50% of the assessed cells (32% vs. 64%; OR = 0.26; p = 0.0262). A more than three-fold lower risk of endometrial cancer development was observed in patients with LSF expression in more than 75% of the assessed cells (24% vs. 52%; OR = 0.29; p = 0.0454). Endometrial cancer was diagnosed in those with a lower level of TSG101 expression than in those with a cancer-free endometrium. Decreased expression of TSG101 may be a marker of endometrial cancer, and increased expression of LSF when diagnosed with endometrial cancer may indicate greater advancement of the disease. These markers might be used as diagnostic and prognostic markers-however, there is a lack of a correlation between them.


Endometrial Neoplasms , Transcription Factors , Female , Humans , Transcription Factors/metabolism , Cell Transformation, Neoplastic/genetics , Endometrial Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Endometrium/metabolism
12.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612478

Nuclear factor of activated T cells 5 (NFAT5) and cyclooxygenase 2 (COX2; PTGS2) both participate in diverse pathologies including cancer progression. However, the biological role of the NFAT5-COX2 signaling pathway in human endometrial cancer has remained elusive. The present study explored whether NFAT5 is expressed in endometrial tumors and if NFAT5 participates in cancer progression. To gain insights into the underlying mechanisms, NFAT5 protein abundance in endometrial cancer tissue was visualized by immunohistochemistry and endometrial cancer cells (Ishikawa and HEC1a) were transfected with NFAT5 or with an empty plasmid. As a result, NFAT5 expression is more abundant in high-grade than in low-grade endometrial cancer tissue. RNA sequencing analysis of NFAT5 overexpression in Ishikawa cells upregulated 37 genes and downregulated 20 genes. Genes affected included cyclooxygenase 2 and hypoxia inducible factor 1α (HIF1A). NFAT5 transfection and/or treatment with HIF-1α stabilizer exerted a strong stimulating effect on HIF-1α promoter activity as well as COX2 expression level and prostaglandin E2 receptor (PGE2) levels. Our findings suggest that activation of NFAT5-HIF-1α-COX2 axis could promote endometrial cancer progression.


Endometrial Neoplasms , Gene Expression Regulation , Humans , Female , Cyclooxygenase 2/genetics , Endometrial Neoplasms/genetics , NFATC Transcription Factors , Signal Transduction , Dinoprostone , Factor V , Transcription Factors
13.
Nat Genet ; 56(4): 637-651, 2024 Apr.
Article En | MEDLINE | ID: mdl-38565644

Endometrial carcinoma remains a public health concern with a growing incidence, particularly in younger women. Preserving fertility is a crucial consideration in the management of early-onset endometrioid endometrial carcinoma (EEEC), particularly in patients under 40 who maintain both reproductive desire and capacity. To illuminate the molecular characteristics of EEEC, we undertook a large-scale multi-omics study of 215 patients with endometrial carcinoma, including 81 with EEEC. We reveal an unexpected association between exposome-related mutational signature and EEEC, characterized by specific CTNNB1 and SIGLEC10 hotspot mutations and disruption of downstream pathways. Interestingly, SIGLEC10Q144K mutation in EEECs resulted in aberrant SIGLEC-10 protein expression and promoted progestin resistance by interacting with estrogen receptor alpha. We also identified potential protein biomarkers for progestin response in fertility-sparing treatment for EEEC. Collectively, our study establishes a proteogenomic resource of EEECs, uncovering the interactions between exposome and genomic susceptibilities that contribute to the development of primary prevention and early detection strategies for EEECs.


Carcinoma, Endometrioid , Endometrial Hyperplasia , Endometrial Neoplasms , Fertility Preservation , Proteogenomics , Humans , Female , Progestins/therapeutic use , Antineoplastic Agents, Hormonal , Endometrial Hyperplasia/drug therapy , Fertility Preservation/methods , Retrospective Studies , Carcinoma, Endometrioid/drug therapy , Carcinoma, Endometrioid/genetics , Carcinoma, Endometrioid/pathology , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology
15.
Cell Death Dis ; 15(4): 242, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38565547

Endometrial cancer (EC) cells exhibit abnormal glucose metabolism, characterized by increased aerobic glycolysis and decreased oxidative phosphorylation. Targeting cellular glucose metabolism in these cells could be an effective therapeutic approach for EC. This study aimed to assess the roles of LIN28B, PCAT5, and IGF2BP3 in the glucose metabolism, proliferation, migration, and invasion of EC cells. LIN28B highly expressed in EC, binds and stabilizes PCAT5. PCAT5, overexpressed in EC, and its 1485-2288nt region can bind to the KH1-2 domain of IGF2BP3 to prevent MKRN2 from binding to the K294 ubiquitination site of IGF2BP3, thus stabilizing IGF2BP3. Finally, IGF2BP3 promotes the aerobic glycolysis, proliferation, migration and invasion of EC cells by stabilizing the key enzymes of glucose metabolism HK2 and PKM2. Taken together, our data reveal that the LIN28B/PCAT5/IGF2BP3 axis is critical for glucose reprogramming and malignant biological behavior in EC cells. Therefore, targeting this axis may contribute to the development of a novel therapeutic strategy for EC metabolism.


Endometrial Neoplasms , Glycolysis , Female , Humans , Cell Line, Tumor , Glycolysis/genetics , Endometrial Neoplasms/genetics , Oxidative Phosphorylation , Glucose/metabolism , Cell Proliferation/genetics , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
16.
PLoS One ; 19(4): e0302075, 2024.
Article En | MEDLINE | ID: mdl-38669256

Endometrial cancer is the most prevalent gynecologic malignancy with a high risk of recurrence. Local recurrence occurs in 7-20% of patients with treated stage I cancer within 3 years after primary treatment. In this study, we found significantly elevated mRNA expression levels of the oncoprotein KRAS, along with two replicative stress markers, ATR and CHEK1, in samples of endometrial carcinomas of endometrium (ECE) from patients with relapse. In contrast, mRNA expression levels of the studied genes were low and uniform in samples from patients without relapse. Elevated levels of KRAS protein and the phosphorylated form of ATR/CHEK1 were distinguishing features of recurrent ECE. A strong positive correlation was found between elevated mRNA and protein levels of the studied molecules. Elevated KRAS protein levels are characteristic of poorly differentiated (G3) endometrial carcinomas with deep myometrial invasion in patients without recurrence. In contrast, in patients with recurrence, higher protein levels of KRAS, pATR and pCHEK1 were observed in samples of G1-2 endometrial carcinomas, with statistically significant differences confirmed for pATR. High pCHEK1 protein levels are associated with deep tumor invasion in the myometrium among patients with recurrence. ROC analysis confirmed that evaluating the specificity and sensitivity of KRAS, pATR and pCHEK1 predicts recurrence development in patients with ECE. Our findings indicate that markers of replicative stress may play a significant role in ECE pathogenesis. Determining their levels in tumor samples after primary treatment could help define patients at high risk of recurrence and guide consequent courses of treatment.


Ataxia Telangiectasia Mutated Proteins , Checkpoint Kinase 1 , Endometrial Neoplasms , Neoplasm Recurrence, Local , Proto-Oncogene Proteins p21(ras) , Humans , Female , Endometrial Neoplasms/genetics , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Middle Aged , Checkpoint Kinase 1/metabolism , Checkpoint Kinase 1/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Neoplasm Recurrence, Local/metabolism , Risk Factors , Aged , ras Proteins/genetics , ras Proteins/metabolism , Gene Expression Regulation, Neoplastic , Adult , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
17.
Curr Med Sci ; 44(2): 406-418, 2024 Apr.
Article En | MEDLINE | ID: mdl-38619681

OBJECTIVE: Uterine corpus endometrial carcinoma (UCEC), a kind of gynecologic malignancy, poses a significant risk to women's health. The precise mechanism underlying the development of UCEC remains elusive. Zinc finger protein 554 (ZNF554), a member of the Krüppel-associated box domain zinc finger protein superfamily, was reported to be dysregulated in various illnesses, including malignant tumors. This study aimed to examine the involvement of ZNF554 in the development of UCEC. METHODS: The expression of ZNF554 in UCEC tissues and cell lines were examined by qRT-PCR and Western blot assay. Cells with stably overexpressed or knocked-down ZNF554 were established through lentivirus infection. CCK-8, wound healing, and Transwell invasion assays were employed to assess cell proliferation, migration, and invasion. Propidium iodide (PI) staining combined with fluorescence-activated cell sorting (FACS) flow cytometer was utilized to detect cell cycle distribution. qRT-PCR and Western blotting were conducted to examine relative mRNA and protein levels. Chromatin immunoprecipitation assay and luciferase reporter assay were used to explore the regulatory role of ZNF554 in RNA binding motif 5 (RBM5). RESULTS: The expression of ZNF554 was found to be reduced in both UCEC samples and cell lines. Decreased expression of ZNF554 was associated with higher tumor stage, decreased overall survival, and reduced disease-free survival in UCEC. ZNF554 overexpression suppressed cell proliferation, migration, and invasion, while also inducing cell cycle arrest. In contrast, a decrease in ZNF554 expression resulted in the opposite effect. Mechanistically, ZNF554 transcriptionally regulated RBM5, leading to the deactivation of the Wingless (WNT)/ß-catenin signaling pathway. Moreover, the findings from rescue studies demonstrated that the inhibition of RBM5 negated the impact of ZNF554 overexpression on ß-catenin and p-glycogen synthase kinase-3ß (p-GSK-3ß). Similarly, the deliberate activation of RBM5 reduced the increase in ß-catenin and p-GSK-3ß caused by the suppression of ZNF554. In vitro experiments showed that ZNF554 overexpression-induced decreases in cell proliferation and migration were counteracted by RBM5 knockdown. Additionally, when RBM5 was overexpressed, it hindered the improvements in cell proliferation and migration caused by reducing the ZNF554 levels. CONCLUSION: ZNF554 functions as a tumor suppressor in UCEC. Furthermore, ZNF554 regulates UCEC progression through the RBM5/WNT/ß-catenin signaling pathway. ZNF554 shows a promise as both a prognostic biomarker and a therapeutic target for UCEC.


Endometrial Neoplasms , Wnt Signaling Pathway , Female , Humans , beta Catenin/genetics , beta Catenin/metabolism , Cell Cycle Proteins/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Endometrial Neoplasms/genetics , Glycogen Synthase Kinase 3 beta/metabolism , RNA-Binding Proteins/metabolism , Tumor Suppressor Proteins/genetics , Wnt Signaling Pathway/genetics
18.
In Vivo ; 38(3): 1260-1265, 2024.
Article En | MEDLINE | ID: mdl-38688602

BACKGROUND/AIM: Endometrial cancer (EC) is the predominant malignancy among gynecologic cancers and ranks fourth among all types of cancer. Recently, researchers have focused on the development of new prognostic biomarkers. Subunits of the SWI/SNF protein complex, like the ARID1 and BRG1, have been associated with the development of endometrial cancer. The present study aimed to evaluate the expression patterns of ARID1A and BRG1 in a collection of endometrioid adenocarcinomas of the uterus using immunohistochemistry. PATIENTS AND METHODS: The study comprised a total of thirty-three individuals diagnosed with stage I endometrioid endometrial cancer, treated with radical hysterectomy. The histological material was then examined to assess the cytoplasmic and nuclear expression of the proteins. RESULTS: ARID1A exhibited expression in both the cytoplasm and nucleus of cancer cells, whereas BRG1 was mainly expressed in the nuclei. In addition, ARID1A exhibited a notable decrease in expression in grade 3 histology, with no significant correlation with the depth of myometrial invasion. The reduced expression was highly related to tumor expansion into the endocervix. The findings demonstrated a total absence of ARID1A expression in 27% of endometrioid carcinomas, with a significant reduction in expression in an additional 51% of cancer cells. These findings align with the most recent published data. In contrast, in the current study, BRG1 was rarely down-regulated and was extensively expressed in the majority of endometrioid carcinomas, preventing the possibility of statistical analysis. CONCLUSION: In summary, ARID1A expression loss can be used as a biomarker to guide post-operative therapy; however, further investigation is needed, especially for early-stage endometrial cancer.


Biomarkers, Tumor , DNA Helicases , DNA-Binding Proteins , Endometrial Neoplasms , Immunohistochemistry , Nuclear Proteins , Transcription Factors , Humans , Female , Endometrial Neoplasms/pathology , Endometrial Neoplasms/metabolism , Endometrial Neoplasms/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Middle Aged , Aged , Biomarkers, Tumor/metabolism , Neoplasm Staging , Prognosis , Gene Expression Regulation, Neoplastic , Carcinoma, Endometrioid/pathology , Carcinoma, Endometrioid/metabolism , Carcinoma, Endometrioid/genetics , Adult , Neoplasm Grading
...